Section 3-3, Mathematics 108

Dividing Polynomials

Long Division (The Old Fashioned Way)

Example:
$\frac{6 x^{2}-26 x+12}{x-4}$
$x-4) 6 x^{2}-26 x+12$
We see that x goes into $6 x^{2} 6 x$ times so we multiply and subtract

$$
\begin{aligned}
& x-4)-\frac{6 x}{6 x^{2}-26 x+12} \\
& \frac{6 x^{2}-24 x}{2 x+12}
\end{aligned}
$$

Now we see that x goes into $2 x 2$ times

$$
\begin{aligned}
& x - 4 \longdiv { - \frac { 6 x + 2 } { 6 x ^ { 2 } - 2 6 x + 1 2 } } \\
& \begin{array}{r}
6 x^{2}-24 x \\
2 x+12 \\
\frac{2 x-8}{20}
\end{array}
\end{aligned}
$$

So we find $\frac{6 x^{2}-26 x+12}{x-4}=6 x+2+\frac{20}{x-4}$

Note that if you are missing terms, you should include them.
Example:

$$
\begin{aligned}
& \frac{8 x^{4}+6 x^{2}-3 x+1}{2 x^{2}-x+2} \\
& \left.2 x^{2}-x+2\right) \overline{8 x^{4}+0 x^{3}+6 x^{2}-3 x+1}
\end{aligned}
$$

Synthetic Division

Synthetic division is a somewhat easier method if done right however it only works if you are dividing by a first degree polynomial of the form
$x-c$
Example:
$\frac{2 x^{3}-7 x^{2}+5}{x-3}$
$3 \lcm{2} \quad-7 \quad 0 \quad 5$

2	6
-1	

$3 \lcm{2} \quad-7 \quad 0 \quad 5$

$3 \lcm{2} \quad-7 \quad 0 \quad 5$

	6	-3	-9
2	-1	-3	-4

So:
$\frac{2 x^{3}-7 x^{2}+5}{x-3}=2 x^{2}-x-3+\frac{-4}{x-3}$
or
$2 x^{3}-7 x^{2}+5=(x-3)\left(2 x^{2}-x-3\right)-4$

To understand why synthetic division works we need to understand:

The Remainder Theorem

The remainder when dividing a polynomial $P(x)$ by $(x-\mathrm{c})$ is $P(c)$.

Proof

If we divide a polynomial $P(x)$ by $(x-\mathrm{c})$ we get a lower degree polynomial Q and a remainder which is a number.
$\frac{P(x)}{x-c}=Q(x)+\frac{r}{x-c}$ where $Q(x)$ is a polynomial of degree less than $P(x)$ and r is a constant.

We can rewrite this as:
$P(x)=(x-c) Q(x)+r$
But then if we plug in c

$$
P(c)=(c-c) Q(c)+r=r
$$

so

$$
P(c)=r
$$

Example:

$$
P(x)=3 x^{5}+5 x^{4}-4 x^{3}+7 x+3
$$

Find $P(x) /(x+2)$

Solution: $3 x^{4}-x^{3}-2 x^{2}+4 x-1$ Remainder 5

Find $P(-2)$

Since we just divided $P(x)$ by $\left(x-{ }^{-} 2\right) P(-2)=5$

The Factor Theorem

A corollary to the remainder theorem is the factor theorem.
c is a zero of P if and only if $x-c$ is a factor of $P(x)$.
Because this is an if and only if statement, there are two theorems and therefore two different proofs needed.

First, by the remainder theorem

$$
P(x)=Q(x)(x-c)+r
$$

If c is a zero of P then

$$
\begin{aligned}
& P(c)=Q(c)(c-c)+r \\
& P(c)=r=0
\end{aligned}
$$

So if c is a zero of P then r is zero.
But that means $P(x)=Q(x)(x-c)$
which means that $x-c$ is a factor of $P(x)$.

On the other hand, what if $x-c$ is a factor of $P(x)$.
Then $P(x)=Q(x)(x-c)$
but then $P(c)=Q(c)(c-c)=0$
so c is a zero of P.

Let's look at our synthetic division example again.

$$
\frac{2 x^{3}-7 x^{2}+5}{x-3}
$$

First rewrite the polynomial we are going to divide into as follows
$2 x^{3}-7 x^{2}+0 x+5$
$x\left(2 x^{2}-7 x+0\right)+5$
$x(x(2 x-7)+0)+5$

Note that now 2 will be the coefficient of x^{2} after the division.
Now plug in the value 3 to this and see what happens
$x(x(2 \cdot 3-7)+0)+5$

So our first step is $2 \cdot 3$ and then we add 6 to -7 leaving -1
Note that now -1 will be the coefficient of x after the division.
$x(3 \cdot-1+0)+5$

Then we multiply 3 by -1 and add it to 0 leaving - 3
Note that now -3 is the coefficient of x^{0} after the division.
Finally we multiply 3 by -3 and add it to 5 leaving -4 the remainder
$3(-3)+5$

Notice that these are the exact same calculation steps that we took with synthetic division.

The process of synthetic division is the same as computing $P(c)$, which by the remainder theorem will give us the remainder of multiplying $P(c)$ by c, and in the process we retain the coefficients of the quotient.

Factoring using the Factor Theorem

Factor $f(x)=x^{3}-7 x+6$
We first have to guess a zero.
Note that $f(1)=1-7+6=0$ so $(x-1)$ is a factor of f because the remainder is zero.
$\frac{x^{3}-7 x+6}{x-1}=x^{2}+x-6=(x+3)(x-2)$

So
$f(x)=(x-1)(x-2)(x+3)$

